Long-term sensitization training in Aplysia decreases the excitability of a decision-making neuron through a sodium-dependent mechanism.
نویسندگان
چکیده
In Aplysia, long-term sensitization (LTS) occurs concurrently with a suppression of feeding. At the cellular level, the suppression of feeding is accompanied by decreased excitability of decision-making neuron B51. We examined the contribution of voltage-gated Na+ and K+ channels to B51 decreased excitability. In a pharmacologically isolated Na+ channels environment, LTS training significantly increased B51 firing threshold, compared with untrained controls. Conversely, in a pharmacologically isolated K+ channels environment, no differences were observed between trained and untrained animals in either amplitude or area of B51 K+-dependent depolarizations. These findings suggest that Na+ channels contribute to the decrease in B51 excitability induced by LTS training.
منابع مشابه
Effects of aversive stimuli beyond defensive neural circuits: reduced excitability in an identified neuron critical for feeding in Aplysia.
In Aplysia, repeated trials of aversive stimuli produce long-term sensitization (LTS) of defensive reflexes and suppression of feeding. Whereas the cellular underpinnings of LTS have been characterized, the mechanisms of feeding suppression remained unknown. Here, we report that LTS training induced a long-term decrease in the excitability of B51 (a decision-making neuron in the feeding circuit...
متن کاملBrief Communication Effects of aversive stimuli beyond defensive neural circuits: Reduced excitability in an identified neuron critical for feeding in Aplysia
In Aplysia, repeated trials of aversive stimuli produce long-term sensitization (LTS) of defensive reflexes and suppression of feeding. Whereas the cellular underpinnings of LTS have been characterized, the mechanisms of feeding suppression remained unknown. Here, we report that LTS training induced a long-term decrease in the excitability of B51 (a decisionmaking neuron in the feeding circuit)...
متن کاملLong-term sensitization in Aplysia: biophysical correlates in tail sensory neurons.
A fundamental problem in the cellular analysis of learning and memory is the identification of the neuronal substrates of long-term information storage and their relation to short-term cellular alterations. In this report, biophysical correlates of long-term sensitization of a simple withdrawal reflex in the mollusc Aplysia were examined. A voltage-clamp analysis of the sensory neurons that con...
متن کاملLong-term regulation of neuronal high-affinity glutamate and glutamine uptake in Aplysia.
An increase in transmitter release accompanying long-term sensitization and facilitation occurs at the glutamatergic sensorimotor synapse of Aplysia. We report that a long-term increase in neuronal Glu uptake also accompanies long-term sensitization. Synaptosomes from pleural-pedal ganglia exhibited sodium-dependent, high-affinity Glu transport. Different treatments that induce long-term enhanc...
متن کاملLong-term sensitization in Aplysia increases the number of presynaptic contacts onto the identified gill motor neuron L7.
We have used the gill and siphon withdrawal reflex of Aplysia to study the morphological basis of the persistent synaptic plasticity that underlies long-term sensitization. One critical locus for storage of the memory for sensitization is the set of monosynaptic connections between identified siphon sensory neurons and gill and siphon motor neurons. To complement previous morphological studies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Learning & memory
دوره 24 6 شماره
صفحات -
تاریخ انتشار 2017